取消
NH-BPGVFP3变频电缆永高电池

NH-BPGVFP3变频电缆永高电池

安徽亨利仪表电缆有限公司
所在地:安徽 滁州
最新产品 进入店铺
  • 详情
  • 联系方式

变频器的工作原理是把市电(380V、50Hz)通过整流器变成平滑直流,然后利用半导体器件(GTO、GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。上述的两次变换可简化为AC-DC-AC(交-直-交)变频方式。 

    典型数字控制通用变频器-异步电机调速系统原理图 目前的变频电源是通过电力半导体器件调压,较大程度上改变了波形特性,从而对电机和电缆带 来了新问题。变频器中通常通过大功率的自关断开关器件(BJT、IGBT等)进行整流、然后对直流电压进行PWM逆变,结果是在输入输出回路产生电压的高次谐波,干扰供电系统、负载及其他邻近电气设备,尤其是控制系统的I/O信号。同时由于高次谐波的存在,使得变频电缆应具有更高的绝缘安全裕度。在实际使用过程中,经常遇到变频器高次谐波的干扰问题,下面简单介绍谐波产生的机理、传播途径等问题。

   变频器的主回路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经滤波电容滤波及大功率晶闸管开关元件逆变为频率可变的交流电压。在整流回路中,由于不规则的矩形波的存在,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变回路中,输出电流波形是PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM载频可达15kHz。同样输出回路电流也可分解为只含正弦波的基波和其他各次谐波,高次谐波电流通过电缆向空间辐射,干扰邻近电气设备。因此,针对变频器的工作特点,变频电缆应着重解决以下问题:  (1)电缆本体对外发射电磁波,抑制高次谐波通过电缆对外界的干扰。  (2)脉冲电压对绝缘的影响,防止脉冲电压对 电缆的影响。  变频电缆从电缆结构设计上解决防干扰能力及绝缘的安全可靠性上显得尤为重要。

    变频电缆的工作特点  纵上,了解变频器的工作特点,变频电缆的设计应着重控制以下方面:  3.1  电缆本体对外发射电磁波  一般变频家用电器为单相供电,长度很短,功率也较小,设计时已将变频电源、连接电缆和变频电机一并设置在金属壳内,抑制了电磁波对外发射。但是在工业领域内,电机功率较大,连接变频电机和变频电源之间的电缆长度长,在工作时电缆就是高频电磁波向外发射的有效载体,对于周围邻近地区的通信工具(如无绳电话)或调幅接受器(如收音机调幅波段)将产生干扰,有时情况也比较严重,称之为电磁波的环境污染,国外已对这种电缆提出要求,我们也已提出了相关EMC测试及控制方法。  虽然目前没有国家规范规定电缆发射电磁波造成环境污染的考核指标,但抑制对外高频干扰是必须做到的。要想达到高频干扰的有效抑制,变频电缆屏蔽结构是尤为重要的。屏蔽结构是抑制对外高频干扰方法,而屏蔽结构分为铜丝编织屏蔽及铜带屏蔽。                                               编织屏蔽抑制系数与编织密度对比表 为电缆采用铜丝编织屏蔽时,其屏蔽抑制系数与编织密度对比表。不难看出,随着铜丝编织密度的增大,屏蔽抑制系数也不断增长,编织密度越大,屏蔽效果越好。反之,当编织 密度较低时,屏蔽抑制系数也偏低。 (0.1mm厚)铜带屏蔽抑制系数表  电缆采用铜带屏蔽时(铜带厚度为0.1mm厚度时),其屏蔽抑制系数的测量值。从上图可知,当电缆采用铜带屏蔽时,其屏蔽抑制系数是较高的,一般能够达到0.8以上。对比可知,采用铜丝编织屏蔽时,只有编织密度达到90%以上,其屏蔽效果才与铜带屏蔽相当。所以,变频电缆应尽量采用铜带屏蔽,以确保屏蔽效果。制造者习惯 采用铜线编织屏蔽,实际上这并不是方法,材 料消耗大、加工速度慢、屏蔽效果不是***理想。采 用铜带搭盖绕包并轧纹是较为先进的结构和工艺,形成了全封闭金属层,可达到有效的屏蔽功能。铜带厚度与抑制系数表  当电缆采用铜带屏蔽时,不同厚度铜带对屏蔽效果的影响也应予以考虑,铜带厚度不能太薄,以保证抑制电磁波对外发射。当铜带厚度较薄时,屏蔽抑制系数也很低,屏蔽效果不好,而随着铜带厚度的增加,其屏蔽效果得到了提高,但应注意,当铜带达到一定厚度后,屏蔽抑制系数的数值变化不再明显。

     3.2  脉冲电压对绝缘的影响

     变频电源的频率调节范围较宽,不论频率高低,具有一个主频率的波形轮廓,它包含了许多高次谐波,作为一种行波经多次反射,幅值叠加可达到工作电压数倍,电缆越长,幅值越高,若电缆绝缘安全系数不高,可能被击穿。因此为确保电缆安全,我们从以下三个方面着手:  (1)增大绝缘厚度,提高绝缘耐电压能力,同时选用绝缘性能较好材料。电缆绝缘厚度可采用对应电压等级的规定,若适当加厚,当然更为可靠,这对变频电缆更为有利。一般陆用情况下,采用聚氯乙烯绝缘并不理想,因为其介质系数偏大,在交变电场作用下,其介质损耗也很大。而采用交联聚乙烯绝缘则较为合适,交联聚乙烯材料介质系数低,介质损耗小,同时其耐温等级和机械性能也比聚氯乙烯好,其兼有机、电、热等优良性能。采用交联聚乙烯作为绝缘材料是比较适合的选择。  (2)导体外增加半导电层(图7),以均化电场,减少尖端放电。 导体在加工过程中,可能会在表面产生缺陷(如毛刺),导体外没有半导电层,则在缺陷处产生电场畸变,容易产生击穿破坏绝缘。如施加半导电层后,由于半导电层的存在,导体表面电场得到均化,可有效避免绝缘击穿。  (3)电缆采用对称结构,以达到均化电场和各相均衡。对于四芯低压电缆,首先是改善绝缘线芯的排列,假如电缆的四个芯直接成缆,是不对称结构,如果将第四芯分解为三个截面较小的绝缘芯,把三大三小线芯对称结构成缆,  完整的三相正弦供电系统,当三相电流平衡时,其中性线的电流为零,若出现三次谐波,则三次谐波的电流分量在中性线内不存在相位差,所以直接叠加成分量的三倍。若变频原供电对 象是三个单相变频电机,而且处于三相功率分布平衡状态,则中性线流更大,中性线截面应不小于相截面。为了取得很好的各相均衡特性,宜采用对称结构。


以上为"NH-BPGVFP3变频电缆永高电池"供应信息
相关推荐
产品分类 更多 >
新品速递 查看更多 >
中国供应商> 电线、电缆> 其他电线、电缆> NH-BPGVFP3变频电缆永高电池
留言 进店 QQ交谈 电话联系